

Current Carrying Capacity of CompactPCI® Connectors

Heather Parsons

Ana Arreola

Jet Propulsion Laboratory

California Institute of Technology

Agenda

What are compactPCI® connectors and why is JPL using them?

What is current carrying capacity?

- What are the test requirements?
- What was the test procedure?
- What are the results?
- What is the next step?

CompactPCI® Connector

PCI - Peripheral Component Interconnect

Press Fit

Material

- Connector Body (glass filled polyester housing)
- Pin (phosphor-bronze with Ni and Au plating)
- High Pin Count (110 pins per connector)

CompactPCI® Connectors for Space Flight Use

Smaller more compact electronics

- higher density of input/outputs
- high speed interface bus

Launching spacecraft more frequently

- commercial parts
- use plug and play with ground support equipment
- Validate compactPCI® connectors for use in space flight

Current Carrying Capacity

Amount of current a connector pin can carry before the temperature of the connector rises above the manufacturer's suggested temperature limit (in the case,125°C)

Data taken when current is simultaneously flowing through all the pins

Current Carrying Capacity

Current Carrying Capacity Graph

For example:If the connector is at an ambient of 70°C, 1 A of current will increase the temperature of the connector to 125°C.

ME MAN

Figure 52 - Current-carrying capacity: derating curves for different contact arrangements

Current Carrying Capacity of Vendors

	Current-Carrying Capacity in Air (all pins carrying current)	Vendor's Maximum, Recommended Temperature of the Connectors
Vendor 1	1 A @ 70°C	125°C
Vendor 2	1 A @ 70°C	125°C
Vendor 3	1.5 A @ 70°C	125°C

Data (in air) specified is from the manufacturer's data sheets

Test Requirements

Conditions of space environment (vacuum)

- The connector's ambient temperature in space is 70°C
- 1 A of current is required to flow through the connector
- To simplify this test, the evaluation was done in air

Test Requirements

JPL's requirement for de-rating of air for space application is 60%

With de-rating, the connector must have a current capacity of 1.7 A at room temperature

- Ambient temperature of connectors in space is 70°C
- The connectors were tested such that the minimum temperature increase was 55°C
- This met the manufacturer's required maximum of 125C

Test Setup

Test Articles

- 3 backplanes: each consisting of the 3 vendors connectors
- 3 cards: one for each backplane
- Connectors were press fit and soldered

Test Setup

Thermocouples

- Each card had 4 thermocouples attached to the connector
- Each backplane had 4 thermocouples attached to each connector (total of 12 thermocouples)

Equipment

- Data Acquisition Delta Logger (Temp and Volt Measurements)
- Power Supply
- High Precision Shunt Resistor
- Resistor Load

Test Setup

Test Procedure

Began test with current at 0.5 A

Incremented by 0.25 A until the current reached 1.0 A

- Incremented by 0.1 A until the temperature of the connector reached 75°C
- Let current stabilize after each increment

Test Results

Test Results

	-	Current Carrying Capacity at Ambient of 70°C in Air	Temperature Rise above Ambient
	Vendor 1	1.4 A @ 70°C	58°C
der state e	Vendor 2	1.4 A@70°C	58°C
	Vendor 3	1.7 A@70°C	55°C

Test Results

Met and exceeded the current capacity specified on manufacturer's data sheets for all three vendors

Only vendor 3 passed the JPL test requirements

Next Steps

Perform test in vacuum environment to correlate data

Fabricate chassis to hold backplanes and cards